Roll No.

E-3822

M. A./M. Sc. (Previous) EXAMINATION, 2021

MATHEMATICS

Paper Second

(Real Analysis)

Time : Three Hours]

[Maximum Marks : 100

Note : Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

(a) If f be a bounded function and α be a monotonically increasing function on [a, b], then f∈ R(α) if and only if for every ∈ z₀ there exists a partition set P such that :

$$U(P, f, \alpha) - L(P, f, \alpha) < \in$$

(b) If α be a monotonically increasing function on [a, b]and $\alpha' \in \mathbb{R}[ab]$. Let f be a bounded real function on [ab], then $f \in \mathbb{R}(\alpha)$ if and only if $f\alpha' \in \mathbb{R}[a, b]$ and $\int_{a}^{b} fd\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$.

(c) If f(x) = x and $\alpha(x) = x^2$, does $\int_0^1 f d\alpha$ exist? If it exists, then find its value.

Unit—II

- 2. (a) Prove that the series $1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\dots$ is convergent and its sum is zero while the sum of the rearranged series $1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\dots$ is log 2, and of series $1+\frac{1}{2}+\frac{1}{3}-1+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{2}+\dots$ is log 3.
 - (b) Explain pointwise convergence and uniform convergence of sequences with examples.
 - (c) A series of function $\sum_{n=1}^{\infty} u_n(x)$ will converge uniformly

on X of there exists a convergent series $\sum_{n=1}^{\infty} M_n$ of

positive constants such that :

$$|u_n(x)| \le M_n$$
 for all n and $x \in X$.

Unit—III

- (a) Define linear transformation and if a linear operator A on a finite-dimensional rector space X is one-to-one if and only if the range of A is all of X, that is, iff A is onto.
 - (b) State and prove inverse function theorem.
 - (c) State and prove Stokes' theorem.

Unit-IV

- 4. (a) Define outer measure and prove that the outer measure of an interval is its length.
 - (b) State and prove Lebesgue differentiation theorem.
 - (c) Define Lebesgue measurable set and prove that if E_1 and E_2 are measurable sets, then so $E_1 \cup E_2$.

Unit-V

5. (a) Let $1 \le p < \infty$ and let $f, g \in L^p(u)$. Then $f + g \in L^p(u)$ and :

$$||f + g||_p \le ||f||_p + ||g||_p$$

- (b) State and prove Jensen's inequality.
- (c) Define L^p space and prove that L^p space is complete.